我國含氮鋼的研究開始于20世紀(jì)50年代,北京科技大學(xué)(原北京鋼鐵學(xué)院)的肖紀(jì)美教授就開始研究鋼中氮對(duì)組織和性能的影響,發(fā)現(xiàn)錳、氮能部分或全部代替奧氏體不銹鋼中的鎳,首次提出了節(jié)鎳奧氏體不銹鋼基本成分設(shè)計(jì)和力學(xué)性能計(jì)算的方法及計(jì)算圖,成功研發(fā)了Cr-Mn-C-N節(jié)鎳奧氏體不銹鋼。70年代,中國科學(xué)院金屬研究所成功地開發(fā)出含氮無鎳雙相不銹鋼(0Cr17Mn14Mo2N),并獲得了一應(yīng)用。21 世紀(jì)初,中國科學(xué)院金屬研究所在國家計(jì)劃(“863計(jì)劃”)項(xiàng)目的支持下,研究開發(fā)出含氮醫(yī)用無鎳奧氏體不銹鋼(17Cr-14Mn-2Mo-0.46N),較全面地研究了材料的力學(xué)性能、耐腐蝕性能、腐蝕疲勞性能、磨蝕性能和生物相容性。結(jié)果證明,新鋼種較傳統(tǒng)醫(yī)用 316L不銹鋼具有更為優(yōu)良的綜合力學(xué)性能、耐體液腐蝕能力和生物學(xué)相容性。此外,中國科學(xué)院金屬研究所以中氮含量的22Cr-13Ni-5Mn為基礎(chǔ)研制成功的高強(qiáng)度抗氫鋼(HR-3)在核技術(shù)領(lǐng)域獲得了應(yīng)用。東北大學(xué)自20世紀(jì)90年代以來也開展了氮合金化的實(shí)驗(yàn)室研究工作,并在10t電弧爐和30tAOD爐上應(yīng)用。隨著我國大型AOD精煉裝備的普及和精煉技術(shù)的進(jìn)步,特別是以氮代氬吹煉工藝的日趨成熟,以山西太鋼不銹鋼股份有限公司(簡(jiǎn)稱太鋼)為代表的不銹鋼企業(yè)發(fā)展了系列含氮、中氮和高氮不銹鋼,豐富了氮合金化不銹鋼品種并拓展了其應(yīng)用領(lǐng)域,促進(jìn)了我國氮合金化不銹鋼的繁榮和發(fā)展。


  20世紀(jì)80年代末我國開始了高氮不銹鋼的初步研究,如原上海鋼鐵研究所曾利用保加利亞的反壓鑄造技術(shù)試制了高氮不銹鋼。20世紀(jì)90年代以來,基于我國大容量發(fā)電機(jī)組對(duì)高性能護(hù)環(huán)的迫切需求,中國第一重型機(jī)械集團(tuán)公司(一重)、第二重型機(jī)械集團(tuán)公司(二重)、德陽萬鑫電站產(chǎn)品開發(fā)有限公司、東北大學(xué)、太原科技大學(xué)(原太原重型機(jī)械學(xué)院)等企業(yè)和科研院校陸續(xù)開展了Mn18Cr18N護(hù)環(huán)鋼常壓冶煉、熱加工、熱處理、冷變形等工藝研究,目前已突破600MW以上大容量發(fā)電機(jī)組用Mn18Cr18N護(hù)環(huán)成套制備技術(shù),并成功實(shí)現(xiàn)國產(chǎn)化,為我國高氮不銹鋼新品種研發(fā)和生積累了豐富經(jīng)驗(yàn),促進(jìn)了含氮熱作模具鋼、耐蝕塑料模具鋼和軸承鋼,以及Cr-Mn系無磁鉆鋌、坦克裝甲等高氮不銹鋼的生產(chǎn)和應(yīng)用。


  加壓冶金是制備氮含量超過常壓溶解度的高性能高氮不銹鋼的有效途徑,而加壓冶金關(guān)鍵裝備及相關(guān)制備技術(shù)的長(zhǎng)期缺失嚴(yán)重制約了我國高性能高氮不銹鋼的研發(fā)、生產(chǎn)和應(yīng)用。2005年以來,東北大學(xué)特殊鋼冶金研究所在國家自然科學(xué)基金鋼鐵聯(lián)合重點(diǎn)、科技部“863計(jì)劃”等項(xiàng)目經(jīng)費(fèi)的持續(xù)支持下,系統(tǒng)開展了高氮不銹鋼冶金學(xué)基礎(chǔ)、加壓冶金裝備、常壓和加壓冶金制備技術(shù)、氮在高氮不銹鋼的作用機(jī)制以及高氮不銹鋼新品種等方面的研究和開發(fā)工作。2007年東北大學(xué)自主研發(fā)出最大壓力為4MPa的25kg 加壓感應(yīng)爐和國內(nèi)首臺(tái)最大壓力為7MPa的50kg加壓電渣爐,特別是2018年又建立了2kg多功能加壓冶金試驗(yàn)平臺(tái)和500kg半工業(yè)化規(guī)模的加壓電渣爐,以及即將投入使用的500kg加壓感應(yīng)爐,大大加快了我國高氮不銹鋼的研發(fā)進(jìn)程。利用上述加壓冶金關(guān)鍵裝備,系統(tǒng)研究了氮在常壓和加壓合金熔體中的溶解行為,引入氮分壓對(duì)氮活度的修正系數(shù),建立了全新的不銹鋼熔體中氮溶解度模型,廣泛應(yīng)用于常壓和加壓冶煉過程中氮的精確控制,得到國內(nèi)外同行的充分認(rèn)可。構(gòu)建了加壓凝固過程鑄錠和鑄型溫度變化及界面氣隙的測(cè)量裝置和方法,量化了壓力強(qiáng)化冷卻的效果,闡明了加壓強(qiáng)化冷卻機(jī)理,明確了壓力對(duì)凝固相變、凝固熱力學(xué)和動(dòng)力學(xué)參數(shù)的影響規(guī)律,揭示了加壓細(xì)化枝晶組織,抑制疏松縮孔,改善偏析、夾雜物和析出相分布的作用機(jī)理。上述冶金學(xué)基礎(chǔ)研究,豐富和發(fā)展了加壓冶金理論,為高氮不銹鋼加壓冶金制備技術(shù)的研發(fā)提供了理論支撐。同時(shí),開發(fā)出加壓感應(yīng)爐分階段控制壓力的氣相氮合金化、制備復(fù)合電極加壓電渣重熔、加壓感應(yīng)和加壓電渣雙聯(lián)等系列高氮不銹鋼加壓冶金制備技術(shù)。闡明氮在高氮不銹鋼中的作用機(jī)制,建立以“碳氮調(diào)控”為核心及多元素協(xié)同作用高氮不銹鋼合金設(shè)計(jì)方法。開發(fā)出高級(jí)別護(hù)環(huán)鋼P(yáng)900N、P900NMo和P2000,耐蝕塑料模具鋼4Cr13MoN,航空高氮不銹軸承30Cr15Mo1N等新產(chǎn)品。


  此外,武漢科技大學(xué)、華北理工大學(xué)、鋼鐵研究總院等科研院校也開展了加壓下氮的溶解行為、凝固偏析、制備技術(shù)以及品種開發(fā)等研究工作。武漢科技大學(xué)李光強(qiáng)教授建立了0.2kg 的加壓感應(yīng)爐(最大壓力1MPa),研究了氮在Fe-Cr-Mn-Ni、Fe-Cr-V、316L合金熔體中的溶解行為,發(fā)現(xiàn)加壓能顯著提高熔體中氮的溶解度;隨著合金熔體溫度降低,其氮含量提高;隨著合金熔體中氧濃度增加,其吸氮速率及平衡氮含量顯著降低。華北理工大學(xué)王書桓教授構(gòu)建了一臺(tái)高壓真空復(fù)合碳管電阻爐(最大壓力2.5MPa,最高溫度2000℃),利用高氮分壓下底吹氮?dú)獾姆椒ǎ芯苛说贔e-Cr-Mn系、Cr12N合金熔體溶解熱力學(xué)和動(dòng)力學(xué)行為。結(jié)果表明,加壓能顯著增加熔體中的氮溶解度;熔體中氮含量隨著Cr、Mn 含量的增加而提高,隨著溫度的升高而降低;提高合金熔體溫度,其增氮反應(yīng)速率增大;提高凝固壓力,鋼錠的致密性和縮孔現(xiàn)象得到明顯改善,并獲得了防止氮?dú)饪孜龀龅淖钚∧虊毫Αd撹F研究總院利用加壓感應(yīng)爐進(jìn)行了高氮不銹軸承鋼的研發(fā),并對(duì)該類材料的組織和性能、熱加工和熱處理工藝等進(jìn)行了較為深入的研究,其硬度、強(qiáng)度和耐蝕性與國外產(chǎn)品相當(dāng),但沖擊韌性有待進(jìn)一步提升。由于加壓電渣關(guān)鍵裝備的缺失,采用非真空感應(yīng)熔煉+電渣重熔雙聯(lián)工藝發(fā)展了低氮含量的 40Cr15Mo2VN(0.15~0.2%N),強(qiáng)度和硬度較高,但耐蝕性與Cronidur 30仍存在較大差距。近年來,浙江天馬軸承集團(tuán)有限公司從德國ALD公司引進(jìn)一臺(tái)5t加壓電渣爐,撫順特殊鋼股份有限公司從奧地利INTECO公司引進(jìn)一臺(tái)15t加壓電渣爐,進(jìn)一步加速了我國高氮不銹鋼研發(fā)和生產(chǎn)的進(jìn)程。


  高氮不銹鋼能否在工程領(lǐng)域獲得廣泛應(yīng)用在很大程度上取決于其焊接性能,近年來,南京理工大學(xué)、長(zhǎng)春理工大學(xué)、鋼鐵研究總院、哈爾濱工業(yè)大學(xué)等。科研院校采用傳統(tǒng)熔焊工藝(熔化極氣體保護(hù)焊、鎢極氣體保護(hù)焊、激光-電弧復(fù)合焊接等)進(jìn)行了高氮不銹鋼焊接,并對(duì)焊接接頭中氮的行為、組織和力學(xué)性能進(jìn)行了深入的研究。研究表明,采用傳統(tǒng)熔焊工藝焊接高氮不銹鋼易造成焊縫中氮的損失和氮?dú)饪椎男纬桑液缚p組織中會(huì)形成“骨骼狀”δ-Fe,進(jìn)而降低焊接接頭性能。中國科學(xué)院金屬研究所和東北大學(xué)特殊鋼冶金研究所則采用攪拌摩擦焊接工藝進(jìn)行了高氮不銹鋼焊接,深入研究了不同焊接參數(shù)(焊接速度、攪拌頭轉(zhuǎn)速、冷卻速率等)下焊接接頭的氮含量、組織和性能,并成功制備出無氮損失和氮?dú)饪住⒔M織細(xì)小、性能優(yōu)異的高氮不銹鋼焊接接頭。




聯(lián)系方式.jpg